Sagot :
E.b.o.b. - E.k.o.k.
A. EN BÜYÜK ORTAK BÖLEN (E.B.O.B.)
En az biri sıfırdan farklı iki ya da daha fazla tam sayının ortak bölenlerinin en büyüğüne bu sayıların en büyük ortak böleni denir ve e.b.o.b. biçiminde gösterilir.
E.b.o.b. bulunurken verilen sayılar asal çarpanlarına ayrılır. Ortak olan asal çarpanlardan büyük olmayan üslülerin çarpımı bu sayıların e.b.o.b. unu verir.
-Eğer a ¹ 0 veya b ¹ 0 ise e.b.o.b. tanımlı olup e.b.o.b.(a ; b) ³ 1 dir.
-a = b = 0 ise e.b.o.b.(a ; b) tanımsızdır.
B. EN KÜÇÜK ORTAK KAT (E.K.O.K.)
Hepsi sıfırdan farklı iki ya da daha fazla tam sayının pozitif ortak katlarının en küçüğüne bu sayıların en küçük ortak katı denir ve e.k.o.k. biçiminde gösterilir.
E.k.o.k. bulunurken verilen sayılar asal çarpanlarına ayrılır. Ortak olan asal çarpanlardan küçük olmayan üslülerin çarpımı bu sayıların e.k.o.k. unu verir.
a ve b tam sayılarından en az biri sıfır ise, e.k.o.k.(a ; b) tanımsızdır.
--------------------------------------------------------
a ve b pozitif tam sayı, a £ b ise,
-e.b.o.b.(a ; b) £ a £ b £ e.k.o.k.(a ; b)
-a × b = e.b.o.b.(a ; b) × e.k.o.k.(a ; b)
-a ile b aralarında asal ise, e.b.o.b.(a ; b) = 1
--------------------------------------------------------
Ü İki pozitif tam sayının çarpımı, bu sayıların e.b.o.b. u ile e.k.o.k. unun çarpımına eşittir. Fakat ikiden fazla pozitif tam sayının çarpımı, bu sayıların e.b.o.b. u ile e.k.o.k. unun çarpımına eşit olmayabilir.
Ü A pozitif tam sayısı a × b ile tam bölünebiliyor ve e.k.o.k.(a ; b) = x ise, A sayısı x ile tam bölünür.
Ü a ve b pozitif tam sayı olmak üzere,
nin en sade biçimiolmak üzere
Ü En sade biçimdeki kesirleri ile tam bölünebilen en küçük pozitif kesir,
Ü E.b.o.b.(a ; b) = x ise,
Ü E.b.o.b.(x × a ; x × b) = x × E.b.o.b.(a ; b)
Ü E.k.o.k.(x × a ; x × b) = x × E.k.o.k.(a ; b)
Ü a ile b ardışık iki doğal sayı ise,
E.b.o.b.(a ; b) = 1,
E.k.o.k.(a ; b) = a × b dir.
Ü a, b, c ardışık üç doğal sayı ise,
E.b.o.b.(a ; b ; c) = 1 dir.
A. EN BÜYÜK ORTAK BÖLEN (E.B.O.B.)
En az biri sıfırdan farklı iki ya da daha fazla tam sayının ortak bölenlerinin en büyüğüne bu sayıların en büyük ortak böleni denir ve e.b.o.b. biçiminde gösterilir.
E.b.o.b. bulunurken verilen sayılar asal çarpanlarına ayrılır. Ortak olan asal çarpanlardan büyük olmayan üslülerin çarpımı bu sayıların e.b.o.b. unu verir.
-Eğer a ¹ 0 veya b ¹ 0 ise e.b.o.b. tanımlı olup e.b.o.b.(a ; b) ³ 1 dir.
-a = b = 0 ise e.b.o.b.(a ; b) tanımsızdır.
B. EN KÜÇÜK ORTAK KAT (E.K.O.K.)
Hepsi sıfırdan farklı iki ya da daha fazla tam sayının pozitif ortak katlarının en küçüğüne bu sayıların en küçük ortak katı denir ve e.k.o.k. biçiminde gösterilir.
E.k.o.k. bulunurken verilen sayılar asal çarpanlarına ayrılır. Ortak olan asal çarpanlardan küçük olmayan üslülerin çarpımı bu sayıların e.k.o.k. unu verir.
a ve b tam sayılarından en az biri sıfır ise, e.k.o.k.(a ; b) tanımsızdır.
--------------------------------------------------------
a ve b pozitif tam sayı, a £ b ise,
-e.b.o.b.(a ; b) £ a £ b £ e.k.o.k.(a ; b)
-a × b = e.b.o.b.(a ; b) × e.k.o.k.(a ; b)
-a ile b aralarında asal ise, e.b.o.b.(a ; b) = 1
--------------------------------------------------------
Ü İki pozitif tam sayının çarpımı, bu sayıların e.b.o.b. u ile e.k.o.k. unun çarpımına eşittir. Fakat ikiden fazla pozitif tam sayının çarpımı, bu sayıların e.b.o.b. u ile e.k.o.k. unun çarpımına eşit olmayabilir.
Ü A pozitif tam sayısı a × b ile tam bölünebiliyor ve e.k.o.k.(a ; b) = x ise, A sayısı x ile tam bölünür.
Ü a ve b pozitif tam sayı olmak üzere,
nin en sade biçimiolmak üzere
Ü En sade biçimdeki kesirleri ile tam bölünebilen en küçük pozitif kesir,
Ü E.b.o.b.(a ; b) = x ise,
Ü E.b.o.b.(x × a ; x × b) = x × E.b.o.b.(a ; b)
Ü E.k.o.k.(x × a ; x × b) = x × E.k.o.k.(a ; b)
Ü a ile b ardışık iki doğal sayı ise,
E.b.o.b.(a ; b) = 1,
E.k.o.k.(a ; b) = a × b dir.
Ü a, b, c ardışık üç doğal sayı ise,
E.b.o.b.(a ; b ; c) = 1 dir.
Haberin Devamı: http://www.rehberim.net/forum/matematik-geometri-416/48100-ekok-ebob-nedir.html#ixzz2AzuohnS7
Thank you for visiting our website wich cover about Matematik. We hope the information provided has been useful to you. Feel free to contact us if you have any questions or need further assistance. See you next time and dont miss to bookmark.