Sagot :
Leonardo tahmini 1178 yılında İtalya'nın Pisa şehrinde doğdu. Kesin doğum tarihi bilinmemektedir. Babası Guglielmo'dur.Takma adı Bonaccio idi ve bu ad, iyi tabiatlı veya sade ruhlu anlamına gelmekteydi. Annesi Alessandra,Leonardo 9 yaşındayken öldü. Leonardo babasının takma adını miras olarak aldı. İtalyanca Filius Bonacci, Bonacci'nin oğlu anlamına gelmekteydi ve Leonardo bu nedenle Fibonacci diye anılmaya başlandı.[4]
Babası Guglielmo Cezayir'in Béjaïa limanı ile İtalya'nın Bugia kenti arasında bir ticaret postasını idare etmekteydi. Genç bir çocuk olan Leonardo babasına yardım etmek için onunla seyahat ederdi. Burası Leonardo'nun Hint-Arap sayı sistemini öğrendiği yerdir.
Fibonacci Hint-Arap sayıları ile aritmetik işlemler yapmanın Roma rakamları ile hesap yapmaktan çok daha basit ve verimli olduğunu gördü. Leonardo bütün Akdeniz bölgesini gezdi ve dönemin önde gelen Arap matematikçiler ile çalışma olanağı buldu. Leonardo yaklaşık olarak 1200 yıllarında bu seyahatinden döndü. 1202 yılına gelindiğinde 32 yaşında, öğrendiklerini "abaküs kitabı" veya "hesaplama kitabı" anlamına gelen Liber Abaci isimli eserinde topladı. Yayınladığı bu eserinde Hint-Arap Sayı Sistemi'ni avrupa'ya duyurdu.
Leonardo matematik ve bilim ile ilgilenmeyi seven Roma İmparatoru II. Frederick ile dost oldu. 1240 senesinde Pisa cumhuriyeti kendisini Leonardo Bigollo namıyla taltif edip onurlandı ve maaş bağlandı.[5] 19. yüzyılda Pisa'da Fibonacci heykeli yapılmış ve buraya dikilmiştir. Heykel bugün Camposanto'nun batı galerisinde ve Piazza dei Miracoli tarihi mezarlığında bulunmaktadır.[6]
Liber Abaci [değiştir]Liber Abaci'de (1202) Fibonacci, modus indium (Hintlilerin Yöntemi) adını verdiği ve günümüzde Arap-Hint sayıları diye bilinen modern ondalık sayı sistemini tanıtır. Bu kitap gündelik hayatta ticari defter tutma, ölçü birimlerini çevirme, faiz hesaplama, para bozma ve değiştirme ve benzeri işlemlerde önemini göstermiştir. Kitap Avrupa'da tahsilli insanlar arasında hızlı bir şekilde yayılmış ve Avrupa'nın müspet bilimde ilerlemesine önemli etkileri olmuştur.
Liber Abaci'de ayrıca kapalı bir ortamdaki bir tavşan ailesinin artışını, her tavşan çiftinin bir ay sonra bir yavru yapıp onun da 1 ay sonra 1 yavru yapacağı gibi ideal varsayımlar altında hesplanmasını gösterir. Bu problemin çözümünde tavşan çiftlerinin sayısının artışını gösteren sayı dizisi Fibonacci sayıları, diziye de Fibonacci dizisi denir. Bu sayı dizisi 6. yüzyıldan beridir Hintli matematikçiler tarafından bilinmekteydi ancak Avrupa'ya ilk olarak Fibonacci tarafından tanıtılmıştır.[7][8]
Fibonacci dizisi [değiştir]Daha önce 6. yüzyılda Hintli matematikçiler tarafından bulunmuş olan bu sayı dizisi Liber Abaci kitabında tavşanların üremesiyle ilgili problemin hesaplanması sonucu Fibonacci tarafından 1202 yılında ortaya konmuştu. Dizinin ilk sayı değeri 0, ikincisi 1 ve her ardışık elemanı da önceki iki elemanın değerinin toplamı alınarak bulunur ve bu halde 0, 1, 1(1+0), 2(1+1), 3(2+1), 5(3+2), 8(5+3), 13(8+5),21(13+8)... şeklinde artar.
Altın oran [değiştir]Bu dizinin ileri elemanlarında, bir sonraki elemanın bir öncekine oranı Altın oran adı verilen ve yaklaşık 1,618 (1:0,618) değerine eşit bir sayıyı verir.
Altın oran matematikte genellikle harfi ile gösterilir.
Tabiattaki canlılarda uzuvların oranı altın oran adı verilen 1.618... sayısına uygunluk gösterir. Antik mimari eserler ve bazı modern mimari eserler bu orana uygun tasarlanırlar. Altın orana uygun ölçülerdeki nesnelerin ve canlıların daha estetik olduğu ve güzel göründüğü savunulur.
Ayçiçeğinin merkezinden dışarıya doğru sağdan sola ve soldan sağa doğru taneler sayıldığında çıkan sayılar Fibonacci Dizisinin ardışıksik terimleridir. Papatya Çiçeğinde de ayçiçeğinde olduğu gibi bir Fibonacci Dizisi mevcuttur. Fibonacci dizisinde ardışık elemanlar bir önceki elamanın oranındaki ardışık terimlerin farkıyla oluşan dizi de Fibonacci dizisidir. Ömer Hayyam üçgenindeki tüm katsayılar veya terimler yazılıp çapraz toplamları alındığında Fibonacci Dizisi ortaya çıkar. Çam kozalağındaki taneler kozalağın altındaki sabit bir noktadan kozalağın tepesindeki başka bir sabit noktaya doğru spiraller (eğriler) oluşturarak çıkarlar. İşte bu taneler soldan sağa ve sağdan sola sayıldığında çıkan sayılar, Fibonacci Dizisi'nin ardışık terimleridir.Bitkilerin yapraklarının dizilişinde bir Fibonacci Dizisi söz konusudur; yani yaprakların diziliminde bu dizi mevcuttur. Mimar Sinan'ın da birçok eserinde Fibonacci dizisi görülmektedir. Mesela Süleymaniye ve Selimiye Camileri'nin minarelerinde bu dizi mevcuttur.[kaynak belirtilmeli]
Kaynaklar [değiştir] ^ Howard Eves. An Introduction to the History of Mathematics. Brooks Cole, 1990: ISBN 0-03-029558-0 (6th ed.), p 261. ^ Leonardo Pisano - page 3: "Contributions to number theory". Encyclopædia Britannica Online, 2006. Accessed 18 September 2006. ^ Parmanand Singh. "Acharya Hemachandra and the (so called) Fibonacci Numbers". Math. Ed. Siwan , 20(1):28-30, 1986. ISSN 0047-6269] ^ http://la.wikisource.org/wiki/Liber_abbaci_-_Prologus Latince Wikikaynaktaki Liber Abaci: "Incipit liber Abaci Compositus a leonardo filio Bonacij Pisano" bu şekilde geçmektedir. ^ Sources in Recreational Mathematics: An Annotated Bibliography isimli İngilizce MS Word belgesinde David Singmaster tarafından 18 Mart 2004 tarihinde. Bigollo kelimesi seyyah ve tembel gibi anlamlara gelmektedir. ^ Fibonacci'nin Pisa'daki heykeli ^ Parmanand Singh. "Acharya Hemachandra and the (so called) Fibonacci Numbers". Math. Ed. Siwan, 20(1):28-30, 1986. ISSN 0047-6269] ^ Parmanand Singh,"The So-called Fibonacci numbers in ancient and medieval India." Historia Mathematica 12(3), 229–44, 1985.Thank you for visiting our website wich cover about Matematik. We hope the information provided has been useful to you. Feel free to contact us if you have any questions or need further assistance. See you next time and dont miss to bookmark.