Sagot :
PERMÜTASYON AMAÇ:Permütasyonla ilgili temel kavramları kullanabilme becerisi
Olasılık Amaç:Olasılık ve olasılıkla ilgili temel kavramlar bilgisi
Planlama:Permütasyon ve olasılık kavramı
1)Permütasyon
A)Genel çarpma özelliği
B) Permütasyon
1) ”n” elemanlı bir kümenin n’li permütasyonu
2) “n”elemanlı bir kümenin r’li permütasyonu
3)Dairesel permütasyon
2)Olasılık:
A)Olay ve olasılık tanımı
B)Ayrık iki olayın olasılığı (A veya B’nin olasılığı)
C)Aynı zamanda geçekleşen bağımsız iki olayın olasılığı(A ve B’nin olasılığı)
İşleniş
Permütasyon ( Büyük )
a) Saymanın Temel İlkesi ( Genel Çarpma Özelliği )
ÖR: Ahmet’in iki değişik pantolonu üç değişik renk gömleği vardır.Ahmet gömlek ile pantolonunu kaç değişik biçimde giyebilir.
ÇÖZÜM: Ahmet’in değişik renk gömlekleri G1,G2,G3 ve pantolonları da P1,P2 olsun.
Ahmet bu giysileri aşağıda gösterilen biçimlerde giyebilir.
1. Giyinme => G1 P1
2. Giyinme => G1 P2
3. Giyinme => G2 P1
4. Giyinme => G2 P2
5. Giyinme => G3 P1
6. Giyinme => G3 P2 biçiminde giyebilir.
Ahmet’in giyinişi 6 değişik biçimde olmaktadır. Bunu kısaca,
Gömlek Pantolon
3 tane 2 tane
3 x 2 = 6 şeklinde buluruz.
Ardışık iki işlemden biri, a değişik yoldan yapılabiliyor. Bu yollardan herhangi biri kullanıldıktan sonra, ikinci bir işlem b değişik yoldan yapılabiliyorsa, ardışık iki işlem a x b değişik yoldan yapılabilir.
Bu özelliğe “Saymanın Temel İlkesi “ yada “ Genel Çarpma Özelliği” denir.
FAKTÖRİYEL
n C N olmak üzere,
1.2.3. _ _ _ _ _ .n
çarpımına n faktöriyel denir ve
n! = n .(n-1).(n-2)._ _ _ _ _ .3.2.1 biçiminde ifade edilir.
0! = 1
1! = 1
n! = n.(n-1)! Olarak tanımlanır.
http://www.cebirsel.com/7.-sinif-matematik/faktoriyel-kavrami-permutasyon-ve-carpmanin-genel-kurali-sbs-7.-s.html bu sana yardımcı olabilir :)
Thank you for visiting our website wich cover about Matematik. We hope the information provided has been useful to you. Feel free to contact us if you have any questions or need further assistance. See you next time and dont miss to bookmark.