(x-1).P(x)=xin karesi+x-a+1 ise P(1)?

Sagot :

ao, a1, a2 ........an  R ve n  N olmak üzere
P(x) = an xn + an–1xn–1 + an–2xn–2 + ..... + a1x + ao biçimindeki çok terimlilere polinom denir.
3x3 + 2x2 – 5x + 3 bir polinomdur.
2 x4 – 3x2 – 6x + 3 bir polinomdur.
–3 x2 + 5x – 1 polinom değildir.
x3 – x–2 + x + 4 polinom değildir.
Bir polinomun derecesi en büyük dereceli terimin derecesidir.
Örneğin x3 – 3x2 + 4 üçüncü dereceden bir polinomdur.
P(x,y) = x5 + x2y2+ x4y2 + y3 – x gibi iki bilinmeyenlerin üsleri toplamıdır.
Örneğin yukarıdaki polinomda x4y2 teriminin derecesi 4+2 = 6 dır.
Bir P(x) polinomunun derecesini d ( P(x) ) biçiminde göstereceğiz.
Örneğin, x4 – 2x3 + 5x2 + x + 3 ise 
d ( P(x) ) = 4 dür.

İki polinomun eşitliği (denkliği):
O iki polinomun derecelerinin aynı ve aynı dereceden terimlerinin katsayılarının eşitliği ile tanımlanır.
P(x) = ax3 + bx2 + cx + d
Q(x) = 2x2 – 3x + 4
iken,
P(x) = Q(x) ise:
ax3 + bx2 + cx + d = 2x2 – 3x + 4 den
a = 0, b = 2, c = –2 ve d = 9 bulunur.

POLİNOMLARDA TOPLAMA – ÇIKARMA 
Toplama ve çıkarma aynı dereceden terimlerin toplama veya çıkarılması ile yapılır.

ÖRNEK : 
P(x) = 2x3 + 3x2 – 5x + 4
Q(x) = 5x2 + 6x2 + 5
ise P(x) + Q(x) ve P(x) – Q(x) ifadelerinin eşitlerini bulunuz?
Çözüm :
P(x)+Q(x) = (2x3 + 3x2 –5x + 4) + 5x3+6x2+5
= 7x3 + 9x2 – 5x + 9
P(x)-Q(x) = (2x3 = 3x2 – 5x+4) – (5x3+6x2+ 5)
= 2x3 + 3x2 – 5x + 4 – 5x3 – 6x2 – 5
= –3x3 – 3x2 – 5x – 1

X-1= 0 EŞİTLENİR x=1 olur yerinde yazarsan a= 3 olur.x-1.Px=xkare artı x -3artı1 burdan xkare artı x-2 bölü x-1 olur xkare artı x-2 yi çarpanlarına ayırırsın ve bunlar x-2.x-1 bölü   x-1 olur x-1 ler sadeleşir x-2 de p1 istediği için 1 yazarsın ve p1=1-2 olur. p1=-1