Sagot :
Kartezyen ya da güray küçük'ün konu konu fasikülleri var. Öğreten fasikül diye geçiyor. Ben aldım çok faydasını gördüm. bir sayfada aynı tip 10-15 soru ile kavramanı sağğlıyor :)
oplama Kuralı : Sonlu ve ayrık kümelerin eleman sayılarının toplamı, bu kümelerin birleşimlerinin eleman sayısına eşittir. Mesela, sonlu ve ayrık iki küme A ve B olsun.
s(A)= m , s(B)= n ve A ile B’nin kesişimi boş küme ise birleşimin eleman sayısı
s(A) + s(B)= m+ n’ dir.
O halde ayrık iki işlemden biri m yolla diğeri n yolla yapılabiliyorsa bu işlemlerden biri veya diğeri m + n yolla yapılabilir.
Devamını oku... FaktöriyelTanım: 1’den n’e kadar olan tamsayıların çarpımına “n faktöriyle” denir ve n! Şeklinde gösterilir.
1.2.3.....n = n!
0!=1
1!=1
2!=1.2 = 2
3!=1.2.3.= 6
4!=1.2.3.4 = 24
Devamını oku... PermütasyonTanım : r ve n pozitif doğal sayılar ve r < n olmak üzere , n elemanlı bir A kümesinin r elemanlı sıralı r’ lilerine A kümesinin r’ li permütasyonları denir.
n elemanlı A kümesinin r’ li permütasyonlarının sayısı P (n,r) = n! / (n-r)! formülü ile bulunur.
Örnek: Farklı renkte 7 mendilin 3’ ü, bir öğrenciye 1 mendil verilmek şartıyla 3 öğrenciye kaç farklı şekilde verilebilir?
Çözüm : A kümesi mendiller kümesi olur. Eleman sayısı 7 ' dir. n = 7 , üç mendil dağıtılacak. r = 3 olur. Bu mendiller ;
P( 7, 3) = 7! / ( 7 - 3 )! = 7.6.5.4! / 4! = 7.6.5 = 210 farklı şekilde dağıtılabilir.
Devamını oku... KombinasyonTanım : r ve n pozitif doğal sayılar ve r < n olmak şartıyla n elemanlı bir A kümesinin r elemanlı alt kümelerinin her birine, A kümesinin r ’ li kombinasyonu denir.
n elemanlı kümenin r’li kombinasyonlarının sayısı, K(n,r), C(n,r), C nr ya da
( nr ) ile gösterilir. Burada C (n,r) veya ( nr ) gösterimleri kullanılacaktır.
n elemanlı kümenin r ' li kombinasyonlarının sayısı,
C(n,r) = ( nr ) = n! / r! . (n-r)! formülü ile bulunur.
UYARI : Permütasyonda sıralama, kombinasyonda ise seçme sözkonusudur.
Devamını oku... Binom Açılımıx ve y reel sayı ve n pozitif bir doğal sayı olmak şartıyla
(x+y) n = C (n,0) xn + C (n,1) xn-1y+C (n,2) xn-2y2+........ .......+C (n,r)xn-ryr+.....+C (n,n)yn
ifadesine x+ y iki terimlisinin n inci kuvvetten açılımı, bir diğer ifadeyle binom açılımı denir.
Binom açılımındaki katsayıları paskal üçgeni ile de bulabiliriz.
1 ...............................(x+y)0
1 1 ...........................(x+y)1
1 2 1 ......................(x+y)2
1 3 3 1 ...................(x+y)3
1 4 6 4 1 ...............(x+y)4
Devamını oku...Thank you for visiting our website wich cover about Matematik. We hope the information provided has been useful to you. Feel free to contact us if you have any questions or need further assistance. See you next time and dont miss to bookmark.