Sagot :
Örnek: (10110)2 = ( ? )10 taban dönüsümünü yapalim.
Örnek: (218)9 = ( ? )10 taban dönüsümünü yapalim.
81 9 1
( 2 1 8 )9 = 92.2 + 91.1 + 90.8
= 81.2 + 9.1 + 1.8
= 162 + 9 + 8
= 179
Örnek: (305)7 = ( ? )10 taban dönüsümünü yapalim.
49 7 1
( 3 0 5)7 = 72.3 + 71.0 + 70.5
= 49.3 + 7.0 + 1.5
= 147 + 0 + 5
= 152
Onluk sayi sIstemInden DIger sayi sIstemlerIne geçIs:
Onluk tabandaki bir sayi diger tabanlara çevrilirken geçilmesi istenen taban hangi taban ise, onluk tabandaki sayi o sayiya bölünmelidir. Bölme islemi, bölümdeki sayi taban sayisindan küçük olana kadar yapilmalidir. Yeni tabandaki sayi, en sondan baslanarak önce bölüm sonra da kalanlar sirasiyla yazilarak elde edilir.
Örnek: (194)10 = ( ? )5 taban dönüsümünü yapalim.
Örnek: (179)10 = ( ? )9 taban dönüsümünü yapalim.
Onluk taban disindakI bIr tabandan baska bIr tabana geçIs:
Verilen sayi önce Onluk tabana çevrilir. Sonra da Onluk tabandaki sayi, geçilmek istenen tabana dönüstürülür. Yani, n verilen taban ve m istenen taban ise, dönüsümün mantigi su sekildedir:
Örnek: (132)5 = ( ? )8 taban dönüsümünü yapalim.
Önce 5 tabanindaki 132 sayisini Onluk tabana çevirelim.
25 5 1
( 1 3 2 )5 = 52.1 + 51.3 + 50.2 = 25.1 + 5.3 + 1.2 =25 + 15 + 2 = 42
Simdi de Onluk tabandaki 42 sayisini 8 tabanina çevirelim.
Böylece, (132)5 = (52)8 olarak bulunur.
Örnek: (1011)2 = ( ? )7 taban dönüsümünü yapalim.
Önce 2 tabanindaki 1011 sayisini Onluk tabana çevirelim.
8 4 2 1
( 1 0 1 1 )2 = 23.1 + 22.0 + 21.1 + 20.1 = 8.1 + 4.0 + 2.1 + 1.1
= 8 + 0 + 2 + 1 = 11
Simdi de Onluk tabandaki 11 sayisini 7 tabanina çevirelim. 11 sayisini, 7 ye böldügümüzde, bölüm 1 ve kalan da 4 olacagindan,
(11)10 = (14)7
sonucunu elde ederiz. Dolayisiyla, (1011)2 = (14)7 olarak bulunur.
Onluk taban disindakI tabanlardakI sayilarin tekligi veya çiftligi:
Sayinin tabani çift ise, sayinin son rakamina (birler basamagindaki rakamina) bakilarak karar verilir. Sayet sayinin son rakami çift ise, sayi çifttir. Sayet sayinin son rakami tek ise, sayi tektir.
Örnegin, (12345)8 = Tek, (1236)8 = Çift olur.
Sayinin tabani tek ise, sayinin rakamlari toplamina bakilarak karar verilir. Sayet sayinin rakamlari toplami çift ise, sayi çifttir. Sayet sayinin rakamlari toplami tek ise, sayi tektir. Örnegin, (234)7 = Tek, (2361)7 = Çift olur.
Onluk taban disindakI tabanlarda arItmetIk Islemler:
Toplama IslemI:
Örnek: (101)2 + (11)2 = ( ? )2
( 1 0 1 )2
+ ( 1 1 )2
Thank you for visiting our website wich cover about Matematik. We hope the information provided has been useful to you. Feel free to contact us if you have any questions or need further assistance. See you next time and dont miss to bookmark.