Sagot :
✨☁️ MҽɾԋαႦα ☁️✨
Fonksiyon Kavramı
Boş kümeden farklı A ve B kümeleri için A nın her bir elemanını B nin bir tek elemanı ile eşleyen kurala A dan B ye fonksiyon denir ve genellikle f, g, h, veya F, G, H, sembolleriyle gösterilir. x in f kuralı altındaki görüntüsü y dir denir. Bunu f(x) = y şeklinde de gösteririz.
Yukarıda Venn şemasıyla gösterimde x ∈ A elemanın, y ∈ B elemanına eşleyen kural f ile gösterilmiştir. Bunu
f: A → B biçiminde ifade ederiz ve B deki y elemanı A daki x elemanına f kuralı ile bağlıdır deriz. Yani
f: A → B
x → y
x in f kuralı altındaki görüntüsü y dir denir.
Bunu f(x) = y şeklinde de gösteririz.
- f: A → B gösteriminde A ya fonksiyonun tanım kümesi B ye fonksiyonun değer kümesi denir. Tanım kümesinin f kuralı altındaki görüntülerinin oluşturduğu f(A) kümesine de görüntü kümesi denir.
Fonksiyon Türleri
Bire-bir Fonksiyon: Tanım kümesindeki farklı kişilerin yaşları da farklı olduğu görülmektedir.
Genel olarak f: A → B, y = f(x) fonksiyonu verilsin. A tanım kümesindeki farklı iki elemanın eğer görüntüleri de farklı oluyorsa f ye bire bir fonksiyon denir. Yani her x1, x2 ∈ A için eğer x1 ≠ x2 iken f(x1) ≠ f(x2) oluyorsa f ye bire bir (1 – 1) fonksiyon denir.
- Örten Fonksiyon: Değer kümesinde boşta eleman kalmıyorsa fonksiyon örten ‘dir. Başka bir deyişle, görüntü kümesi değer kümesine eşit olan fonksiyonlar örtendir.
- İçine Fonksiyon: Örten olmayan fonksiyona içine fonksiyon denir.
- Sabit Fonksiyon: Tanım kümesindeki her eleman değer kümesinde yalnızca bir elemanla eşleşen fonksiyonlara sabit fonksiyon denir. c bir gerçek sayı olmak üzere sabit fonksiyonlar f(x) = c biçiminde gösterilir.
- Bazı Özel Fonksiyonlar: Sabit, Doğrusal, Birim, Parçalı, Permütasyon
- Birim Fonksiyon: Tanım kümesindeki her elemanı yine kendisine dönüştüren kurala birim fonksiyon denir ve f(x) = x biçiminde gösterilir.
Fonksiyonlarda Bileşke İşlemi
f: A → B ve g: B → C
fonksiyonları için A kümesindeki her elemanı, C kümesindeki yalnız bir elemana eşleyen fonksiyona bileşke fonksiyon denir. Bu fonksiyon gof şeklinde gösterilir.
^^ Kølây Gəlsîn ẞâşârīlâr ^^
Thank you for visiting our website wich cover about TEOG. We hope the information provided has been useful to you. Feel free to contact us if you have any questions or need further assistance. See you next time and dont miss to bookmark.