Sagot :
{HERKESE MERHABA}
• Eşkenar Dörtgen Hakkında Bildiklerimiz
~ Karşılıklı açıları eşittir.
~ Bütün kenar uzunlukları birbirine eşittir.
~ Köşegenler dik açıyla birbirini ortalar.
• Soruyu Çözelim!
~ ABCD eşkenar dörtgeninin köşegenlerini çizdiğimizde köşegenler birbirini her zaman 90 derecelik dik açıyla keser ve aynı zamanda birbirlerinin açıortayıdırlar. Buradan hareketle A köşesinden D köşesine çizeceğimiz [AD] köşegeninin uzunluğunun 2 birim olduğunu varsayalım ve bu uzunluğun [AC] kenarına eşit olacağı soruda verilmiş. Malum köşegenler birbirlerini ortaladıkları için köşegenlerin birbirlerini kestikleri noktaya O köşesi dersek, oluşan AOC dik üçgeninde C açısının gördüğü kenar 1 birim uzunlukta, 90 derecenin gördüğü yani hipotenüsün gördüğü kenar da 2 birim uzunlukta olacağından burada 30-60-90 özel üçgeni karşımıza çıkar. 1 birim uzunluktaki kenarı gören açının 30 derece olduğuna ulaştığımıza göre CAO açısı da 60 derece olacağından köşegenlerin birbirlerinin açıortayı olduğunu da belirtmiştik, o yüzden BAC açısının 120 derece olduğunu gördük. Eşkenar dörtgende karşılıklı açılar biribirine eşit olduğundan BDC açısı da 120 derecedir. Her eşkenar dörtgenin aynı zamanda bir paralel kenar olduğu unutulmamalıdır. Soru buradan da alternatif olarak çözülebilecektir.
cєvαp:
- D seçeneği.Ekte ise çözüm mevcut.
✰Bize verilen ABCD eşkenar dörtgenin köşegenlerini çizdiğimizde birbirini 90° açıyla kesen aynı zamanda da birbirinin açıortayı olan köşegenleri görürüz.
✰AD köşegenine 2 br dedik.Bu AC kenarına eşit olacakmış.AD köşegeninin kesiştiği yere O dedik.Böylece AOC üçgeni oluştu.AOC açısı 60° olduğundan BAC açısı 120 olur.Eşkenar dörtgende karşılıklı kenarların açıları eşit olduğu için BDC 'de 120 olmuş oldu.
вílgílєr:
- Açıortay ter T sembolü ile gösterilir.
- Eşkenar dörtgen hakkında: Karşılıklı açılar eşittir.Tüm kenar uzunlukları eşit olur.Son olarak köşegenler birbirlerini dik açıyla ortalarlar.
- Açıortayın olduğu yerdeki harfler köşegen olur.Sorudaki A ve D gibi
#Nєzυkσ || #σptítím
Thank you for visiting our website wich cover about Matematik. We hope the information provided has been useful to you. Feel free to contact us if you have any questions or need further assistance. See you next time and dont miss to bookmark.