Sagot :
Cevap:
x -2arctan(x/2) + ln(x+2) + c
Adım adım açıklama:
[tex]\int {\frac{x^3 + 4x^2 + 8 }{x^3 + 2x^2 + 4x + 8} } \, dx[/tex]
[tex]\int \frac{x^3 +2x^2 + 2x^2 + 8}{(x+2)(x^2+4)} \, dx\\\\\int \frac{x^2(x+2)+ 2(x^2 + 4)}{(x+2)(x^2+4)} \, dx\\\\\int {\frac{x^2(x+2)}{(x+2)(x^2+4)} } \, dx +\int {\frac{2(x^2+4)}{(x+2)(x^2+4)} } \, dx \\\\\int {\frac{x^2}{x^2+4} } \, dx+ \int {\frac{2}{x+2} } \, dx\\\\\int {\frac{x^2+4-4}{x^2+4} } \, dx+ \int {\frac{2}{x+2} } \, dx\\\\\int {1} \, dx -\int {\frac{4}{x^2+4} } \, dx+ \int {\frac{2}{x+2} } \, dx[/tex]
İkinci integral için x = 2tany dönüşümü yaparsak:
dx = 2sec²y.dy
x² = 4tan²y
Ayrıca birinci integralin sonucu x + c ve ikinci integralin sonucu da 2ln(x+2) + c (c herhangi bir sabit sayı)
[tex]-\int \frac{4.2sec^2y}{4tan^2y + 4} \, dy + x+ ln(x+2) + c\\\\-\int {\frac{2sec^2y}{tan^2 + 1} } \, dy + x + ln(x+2) + c\\ \\-\int {\frac{2sec^2y}{sec^2y} } \, dy + x + ln(x+2) + c\\\\-\int {2} } \, dy +x + ln(x+2) + c\\\\-2y +x + ln(x+2) + c[/tex]
x = 2tany idi. O zaman:
x/2 = tany
arctan(x/2) = arctan(tany) = y olur.
Yani sonuç:
x -2arctan(x/2) + ln(x+2) + c
Thank you for visiting our website wich cover about Matematik. We hope the information provided has been useful to you. Feel free to contact us if you have any questions or need further assistance. See you next time and dont miss to bookmark.