Sagot :
~MERHABA~
Fonksiyon Kavramı
Boş kümeden farklı A ve B kümeleri için A nın her bir elemanını B nin bir tek elemanı ile eşleyen kurala A dan B ye fonksiyon denir ve genellikle f, g, h, veya F, G, H, sembolleriyle gösterilir.Yukarıda Venn şemasıyla gösterimde x ∈ A elemanın, y ∈ B elemanına eşleyen kural f ile gösterilmiştir. Bunu
f: A → B biçiminde ifade ederiz ve B deki y elemanı A daki x elemanına f kuralı ile bağlıdır deriz. Yani
f: A → B
x → y
x in f kuralı altındaki görüntüsü y dir denir.
Bunu f(x) = y şeklinde de gösteririz.
f: A → B gösteriminde A ya fonksiyonun tanım kümesi B ye fonksiyonun değer kümesi denir. Tanım kümesinin f kuralı altındaki görüntülerinin oluşturduğu f(A) kümesine de görüntü kümesi denir.
Fonksiyon Türleri
Bire-bir Fonksiyon: Tanım kümesindeki farklı kişilerin yaşları da farklı olduğu görülmektedir.
Genel olarak f: A → B, y = f(x) fonksiyonu verilsin. A tanım kümesindeki farklı iki elemanın eğer görüntüleri de farklı oluyorsa f ye bire bir fonksiyon denir. Yani her x1, x2 ∈ A için eğer x1 ≠ x2 iken f(x1) ≠ f(x2) oluyorsa f ye bire bir (1 – 1) fonksiyon denir.
Örten Fonksiyon: Değer kümesinde boşta eleman kalmıyorsa fonksiyon örten ‘dir. Başka bir deyişle, görüntü kümesi değer kümesine eşit olan fonksiyonlar örtendir.İçine
Fonksiyon: Örten olmayan fonksiyona içine fonksiyon denir.
Bazı Özel Fonksiyonlar: Sabit, Doğrusal, Birim, Parçalı, Permütasyon
Sabit Fonksiyon: Tanım kümesindeki her eleman değer kümesinde yalnızca bir elemanla eşleşen fonksiyonlara sabit fonksiyon denir. c bir gerçek sayı olmak üzere sabit fonksiyonlar f(x) = c biçiminde gösterilir.
Hatırlatma: y = f(x) = c sabit fonksiyonunda x li terimler olmaz.
Birim Fonksiyon: Tanım kümesindeki her elemanı yine kendisine dönüştüren kurala birim fonksiyon denir ve f(x) = x biçiminde gösterilir.
f: R → R, f(x) = x in grafiği çizilirken y = x doğusunu çizmek yeterlidir.
Hatırlatma: y = f(x) = x fonksiyonuna I. açıortay doğrusu denir. f(x) = x birim fonksiyonunda x li terim dışında hiçbir terim olmamalıdır.
Parçalı Fonksiyon:
Tanım kümesini parçalara ayırıp bunların her biri için farklı kurallar içeren fonksiyon parçalı bir fonksiyondur.Permütasyon fonksiyon: Bir kümeden kendisine yazılan bire-bir ve örten fonksiyonlara permütasyon denir.
f: A → A
f = fonksiyonu permütasyon fonksiyon olup;
Doğrusal Fonksiyon:
f(x)=ax+b| şeklindeki fonksiyonlar doğrusaldır. Grafikleri kartezyen düzlemde bir doğru oluşturur. Doğrusal fonksiyonlar, bire-birlik özelliği incelenirken bir örneğini gördüğümüz gibi, a≠0| ise bire-birdir. Doğrunun ayırıcı özelliği eğim dir. Eğim, x| teki 1 br lik artışın y| de yarattığı değişimdir.
Fonksiyonların Grafikleri
f(x) = ax + b fonksiyonunun (Doğrusal fonksiyon) grafiği çizilirken x = 0 için y eksenini kestiği nokta, y = 0 için x eksenini kestiği nokta bulunur. Bu iki noktadan geçen bir doğru çizildiğinde grafik tamamlanır.
~Kolay gelsin~
burdan devamına bakabilirsiniz.
https://www.basarisiralamalari.com/fonksiyonlar-konu-anlatimi/
#hepgülümse#
Thank you for visiting our website wich cover about Matematik. We hope the information provided has been useful to you. Feel free to contact us if you have any questions or need further assistance. See you next time and dont miss to bookmark.