Sagot :
Cevap:
Bir sayının değerinin bilinmediği durumlarda bu sayının yerine bir değişken veya bilinmeyen yazarız. (x, y, a gibi…) En az bir bir bilinmeyen ve bir işlem içeren ifadelere cebirsel ifadeler denir.
ÖRNEK : Bir sayının 2 katının 3 fazlası ifadesini cebirsel ifade olarak yazalım.
Burada sayıyı bilmediğimiz için bu sayı yerine x kullanırız. Cebirsel ifademiz: 2x + 3 olur.
Bir cebirsel ifadede bir sayı ile bir veya birden fazla değişkenin çarpımına terim, değişkenle çarpım durumunda bulunan sayıya katsayı denir.
ÖRNEK : 3x ifadesinde x bilinmeyen, 3 ise katsayıdır.
Terimleri birbirinden ayırmak için toplama ve çıkarma işlemlerinin önünden ifadeyi böleriz. Her parça bir terimdir.
ÖRNEK : 5x + 2y − 7 ifadesini inceleyelim.
5x + 2y − 2 ifadesini “+” ve “−” işaretlerinin önünden bölersek terimleri elde ederiz.
5x / + 2y / − 7 ifadesi 3 terimlidir. Terimleri 5x, 2y ve −7’dir
İçerisinde değişken bulunmayan terime sabit terim denir.
ÖRNEK : 6y + 12 ve −3x − 9 ifadelerinde sabit terimleri bulalım.
6y + 12 cebirsel ifadesinde sabit terim +12’dir.
−3x − 9 cebirsel ifadesinde sabit terim −9’dur.
Sabit terim de bir katsayıdır.
5x2 − 7 cebirsel ifadesinde kat sayılar 5 ve −7’dir.
Bir cebirsel ifadede bir değişkenin aynı kuvvetine sahip terimlerine benzer terim denir.
ÖRNEK : 3x / 5x / – 9x / 0,5x / x terimleri benzer terimdir.
5a / a2 / 5b / 2 / 3y terimlerinden hiç biri benzer terim değildir.
Thank you for visiting our website wich cover about Matematik. We hope the information provided has been useful to you. Feel free to contact us if you have any questions or need further assistance. See you next time and dont miss to bookmark.