Sagot :
[tex] \Large \mathbb{SOLUTION:} [/tex]
[tex] \begin{array}{l} \bold{Given:}\ \begin{cases} \ V(0) = 1000 \\ \textsf{Input of brine} = 6\ \textsf{L/min} \\ C_{\textsf{in}}= 0.01\ \textsf{kg/L} \\ \textsf{Output of brine} = 6\ \textsf{L/min} \end{cases} \\ \\ \textsf{Let }y(t)\textsf{ be the amount of salt dissolved in the} \\ \textsf{tank (in kg) after }t\textsf{ minutes. Now, we have }\\ C_{\textsf{out}} = \dfrac{y(t)}{1000 + 6t - 6t} = \dfrac{y(t)}{1000} = x(t), \\ \textsf{where }x(t)\textsf{ is the salt concentration in the brine} \\ \textsf{leaving the tank at some time }t. \\ \\ \textsf{The basic principle determining the differential} \\ \textsf{equation is} \\ \\ \Large \quad \quad \dfrac{dy}{dt} = R_{\textsf{in}} - R_{\textsf{out}} \\ \\ \textsf{where:} \end{array} [/tex]
[tex] \begin{array}{l} \bullet \: R_{\textsf{in}} = \textsf{rate of the salt entering} \\ \quad \quad\: \: = \left({\footnotesize \begin{array}{c}\textsf{Concentration of} \\\textsf{salt inflow}\end{array}}\right) \times \small(\textsf{Input of brine}) \end{array} [/tex]
[tex] \begin{array}{l} \bullet \: R_{\textsf{out}} = \textsf{rate of the salt leaving} \\ \quad \quad\:\:\: = \left({\footnotesize \begin{array}{c}\textsf{Concentration of} \\\textsf{salt outflow}\end{array}}\right) \times \small(\textsf{Output of brine}) \end{array} [/tex]
[tex] \begin{array}{l} \textsf{Note that }\dfrac{y(t)}{1000} = x(t) \\ y(t) = 1000x(t) \implies \dfrac{dy}{dt} = 1000\dfrac{dx}{dt} \\ \\ R_{\textsf{in}} = 6(0.1) = 0.6\ \textsf{kg/min} \\ R_{\textsf{out}} = 6x(t)\ \textsf{kg/min} \\ \\ \textsf{Substituting these to the differential equation} \\ \textsf{above,} \\ \\ \implies 1000\dfrac{dx}{dt} = 0.6 - 6x \\ \\ \textsf{By separation of variables,} \\ \\ \displaystyle \int_0^{0.05} \dfrac{1000}{0.6 - 6x} dx = \int_0^T dt \\ \\ -\dfrac{1000}{6}\ln (0.6 - 6x) \Big |_0^{0.05} = T\\ \\ \therefore \boxed{T = 115.52\ \textsf{ mins}}, \textsf{where }T\textsf{ is the time taken} \\ \textsf{for the tank to reach a salt concentration of} \\ 0.05\textsf{ kg/L}.\end{array} [/tex]
(シ_ _)シ
Thank you for visiting our website wich cover about Matematik. We hope the information provided has been useful to you. Feel free to contact us if you have any questions or need further assistance. See you next time and dont miss to bookmark.