Sagot :
raktal; matematikte, çoğunlukla kendine benzeme özelliği gösteren karmaşık geometrik şekillerin ortak adıdır. Fraktallar, klasik, yani Eukleidesçi geometrideki kare , daire , küre gibi basit şekillerden çok farklıdır. Bunlar, doğadaki, Eukleidesçi geometri aracılığıyla tanımlanamayacak pek çok uzamsal açıdan düzensiz olguyu ve düzensiz biçimli tanımlama yeteneğine sahiptir. Fraktal terimi �parçalanmış� yada �kırılmış� anlamına gelen Latince "fractus" sözcüğünden türetilmiştir. İlk olarak 1975�te Polonya asıllı matematikçi Beneoit B. Mandelbrot tarafından ortaya atılan fraktal kavramı, yalnızca matematik değil fiziksel kimya, fizyoloji ve akışkanlar mekaniği gibi değişik alanlar üzerinde önemli etkiler yaratan yeni bir geometri sisteminin doğmasına yol açmıştır.
Tüm fraktallar kendine benzer ya da en azından tümüyle kendine benzer olmamakla birlikte, çoğu bu özelliği taşır. Kendine benzer bir cisimde cismi oluşturan parçalar ya da bileşenler cismin bütününe benzer. Düzensiz ayrıntılar ya da desenler giderek küçülen ölçeklerde yinelenir ve tümüyle soyut nesnelerde sonsuza değin sürebilir; öyle ki,her parçanın her bir parçası büyütüldüğünde, gene cismin bütününe benzer. Bu fraktal olgusu, kar tanesi ve ağaç kabuğunda kolayca gözlenebilir. Bu tip tüm doğal fraktallar ile matematiksel olarak kendine benzer olan bazıları, stokastik, yani rastgeledir; bu nedenle ancak istatistiksel olarak ölçeklenirler. Fraktal cisimler,düzensiz biçimli olduklarından ötürü Eukleidesçi şekilleri ötelenme bakışına sahip değildirler. (Ötelenme bakışımına sahip bir cisim kendi çevresinde döndürüldüğünde görünümü aynı kalır.)
Fraktalların bir başka önemli özelliği de, fraktal boyut olarak adlandırılan bir matematiksel parametredir. Bu cisim ne kadar büyütülürse büyütülsün ya da bakış açısı ne kadar değiştirilirse değiştirilsin, hep aynı kalan fraktalların bir özelliğidir. Eukleidesçi boyutun tersine fraktal boyut, genellikle tam sayı olmayan bir sayıyla, yani bir kesir ile ifade edilir. Fraktal boyut, bir fraktal eğri
Thank you for visiting our website wich cover about Matematik. We hope the information provided has been useful to you. Feel free to contact us if you have any questions or need further assistance. See you next time and dont miss to bookmark.