Sagot :
Olasılık bir şeyin olmasının veya olmamasının matematiksel değeri veya olabilirlik yüzdesi, değeridir. Olasılık kuramı istatistik, matematik, bilim ve felsefe alanlarında mümkün olayların olabilirliği ve karmaşık sistemlerin altında yatan mekanik işlevler hakkında sonuçlar ortaya atmak için çok geniş bir şekilde kullanılmaktadır.
olasılık bir olayın olma veya olmama şansının matemetiksel karşılığına denir.imkansız olayın ve imkanlı olayın toplamı daima 1 dir
Tarihçesi
Aristo'un eserlerinin çevirilerinde olasılık sözcüğü, bir gerçeğin rastgelirliliğinin nicelikleştirilmesini ifade etmemektedir, ama bir fikrin ne kadarının genel olarak kabul edildiği ile ilgilidir. Orta Çağ ve sonra Rönesans Çağı'nda birbirini takip eden açıklamalar ve Aristo'nun eserlerinin çevirilerinde yapılan hatalar ile anlam kaymaları ortaya çıkıp bu sözcük bir fikirin olabilirliğinin tasarlanması anlamına gelmeye başlamıştır. XVI. Yüzyıl ve XVII. Yüzyıl'da etikle ilgili din biliminde bulunan olasıcılık bu anlamda ön plana gelmiştir. XVII. Yüzyıl'ın ikinci yarısında olasılık konusunun Blaise Pascal ve Pierre de Fermat tarafından matematiksel olarak incelenmeye başlanması ile olasılık sözcüğü modern anlamına doğru bir yol almıştır. Matematiksel modern olasılık kuramının geliştirilmesi XIX. Yüzyıl'da başlamıştır.
Aristo'ya göre olasılık kavramı [değiştir]
Olasılık sözcüğünün ilk kullanılışı 1370'de Oresme'nin Aristo'nun Nokime Etiği adlı kitabının çevirisinde kullanılmış ve olabilir şeyin tabiatını göstermek için kullanılmıştır. Aristo'ya göre olabilirlilik kavramı (antik Yunanca ενδοξον) günün sorunları olarak tanımlanabilmektedir.
"Olasılıklı fikirler bütün herkes tarafından kabul edilenler; veya pek çok kişi tarafından kabul edilen fikirler; veya yaşlıların hepsi veya çoğu tarafından kabul edilen fikirler; veya son olarak en tanınmış kişilere veya en fazla şöhretli olanlar tarafından kabul eden fikiler olarak sınıflanabilir."
Aristo'ya gore bir fikrin olasılığı genel olarak kişiler tarafından kabul görmesine dayanmaktadır.
XVI. yüzyılda ve XVII. yüzyılda olasılık doktrini [değiştir]
Diğer bir adıyla "olasılıkcılık" olarak anılan, olasılık doktrini bir Katolik etik doktrini olup 16. yüzyılda "Cizvitler" ve "Bartolome de Medina" etkileri ile geliştirilmiştir. Bu teoloji etikine göre "eğer bir fikir olası ise, o fikri geliştirip bir sonuca varmak uygundur; cunku bu fikir karşıtı fikirden daha olasıdır. Böylece bu doktrin çeşitli karşıt tedbirler arasından herhangi bir tedbir üzerine karar verilmesi gerekmekte iken hangisinin en iyi olduğu bilinemediği zaman bir karar verme yöntemi olarak en olası tedbirin seçilmesini kabul etmektedir. Bu tip olasılık kullanılarak karar vermeye modern karar verme teorisinde maksimum olabilirlilik (maximum likelihood) prensibi adı verilmektedir. Böylece bu türlü Hristiyan Katolik etike taban olan olasılık kavramı, modern olabilirlilik kavramı analogu olmaktadır.
XVII. yüzyıldan XIX. yüzyıla kadar olasılık [değiştir]
Kaynak: http://www.msxlabs.org/forum/soru-cevap/306001-olasilik-permutasyon-ve-kombinasyonun-tarihcesi-hakkinda-bilgi-verir-misiniz.html#ixzz2G2TJzA5h
Kombinasyon
Kombinasyon, bir nesne grubu içerisinden, sıra gözetmeksizin yapılan seçimler olarak düşünülebilir, dolayısı ile nesne grubunun tekabül ettiği kümenin alt kümeleri olarak düşünebilir. Çünkü, alt kümelerde sıra önemli değildir. O halde şöyle tanımlayabiliriz: Bir A kümesinin herhangi bir alt kümesine A kümesinin bir kombinasyonu denir. Örneğin, 52 iskambil kartı arasından seçeceğiniz 4 kart, kartları seçme sıranız önemli olmadığından bir kombinasyon problemidir.
Permütasyon, birbirinden ayrılabilir nesnelerin değişik sıralarda dizilmelerini ifade eden kavramdır. Örneğin, 1'den 8'e kadar numaralanmış toplar için bir permütasyon "7, 1, 5, 6, 2, 8 , 4, 3" şeklindedir.
Matematikte permütasyon, her sembolün sadece bir kez ya da birkaç kez kullanıldığı sıralı bir dizidir.
Kaynak: http://www.msxlabs.org/forum/soru-cevap/306001-olasilik-permutasyon-ve-kombinasyonun-tarihcesi-hakkinda-bilgi-verir-misiniz.html#ixzz2G6DueT94
Thank you for visiting our website wich cover about Matematik. We hope the information provided has been useful to you. Feel free to contact us if you have any questions or need further assistance. See you next time and dont miss to bookmark.