Sagot :
Eukleides ve hayatı hakkında üç önemli ve mümkün teori vardır. Bu teoriler zekice toplanmış, mümkün ve mantıklıdır:
1.Eukleides tarihi bir karakter değildir. Yazdığı “Elemanlar” kitabı ve
diğer çalışmaları onu bir sembol yapmıştır.
2.Eukleides, Alexandria’da çalışan matematikçiler takımının lideridir. Bunların hepsi Eukleides’in eserlerine bir katkıda bulunmuşlardır. Hatta Eukleides öldükten sonra onun adı altında kitap yazmaya devam etmişler-dir.
3.Eukleides bir tarihi karakter değildir. Eukleides’in tamamlanmış çalış-maları Alexandria’daki matematikçiler takımı tarafından yazılmıştır. Euk-leides ismini ondan 100 yıl önce yaşamış tarihi bir karakter olan Megaralı Eukleides’ten almıştır.
Kaynak: öklid hayatı ve çalışmaları http://www.webhatti.com/geometri/448488-oklid-hayati-ve-calismalari.html#ixzz2FrtnYd3N
whkaynak
MATEMATİĞİN SINIFLANDIRILMASI
Mantık Kuramı
İspat Kuramı
Model kuramı
Kategori kuramı
Küme kuramı
Özyineleme kuramı
Grup kuramı
Halka kuramı
Cisim Kuramı
Lineer cebir
Galois Kuramı
Sayılar Kuramı
Cebirsel Geometri
Kombinatorik
Öklid geometrisi
Hiperbolik Geometri
Eliptik Geometri
Metrik Geometri
Projektif Geometri
Çizge Kuramı
Diferansiyel Geometri
Fraktal Geometri
Olasılık Kuramı
İstatistik
Matematiksel fizik
Kısmi Dif. Denklemler
Oyun Kuramı
Sistem ve Kontrol Kuramı
Yaklaşım Kuramı
Matematiksel İktisat
Seçim Kuramı
Aktüerya
Finansal Matematik
Kriptografi
Genel Topoloji
Cebirsel Topoloji
Geometrik Topoloji
Düğüm Kuramı
Diferansiyel Topoloji
Nokta-küme Topolojisi
Reel Analiz
Ölçüm Kuramı
Kompleks Analiz
Tensör ve Vektor Analizi
Diferansiyel ve İntegral Denklemler
Nümerik Analiz
Fonksiyonel Analiz
Matematiğin alt dallarını kesin bir biçimde ayırmak zordur. Belki de en kolay sınıflandırma, temelde içerik değil de daha çok motivasyon ve vurgu farkından kaynaklanan uygulamalı ve pür matematik şeklinde yapılan sınıflandırmadır. Pür matematik, matematiğin kendisi için yapılan matematiktir. Diğer bir deyişle "acaba bu ne işe yarayacak" kaygısı gütmeden yapılan matematik. Uygulamalı matematikse üretilen pür matematiği gerçek hayata uygulama zamanı geldiğinde yapılan matematiğin genel adıdır. 100'den fazla alt dalı olan matematiği, ki bu dalların sayısı her geçen vakit artmaktadır, içerik bakımından genel hatlarıyla sınıflandırdık. Burada sadece popüler olan birkaç ana dalı ele alabildik.
Matematiğin Temel KuramlarıMantık Kuramı
İspat Kuramı
Model kuramı
Kategori kuramı
Küme kuramı
Özyineleme kuramı
Cebir
Grup kuramı
Halka kuramı
Cisim Kuramı
Lineer cebir
Galois Kuramı
Sayılar Kuramı
Cebirsel Geometri
Kombinatorik
Geometri
Öklid geometrisi
Hiperbolik Geometri
Eliptik Geometri
Metrik Geometri
Projektif Geometri
Çizge Kuramı
Diferansiyel Geometri
Fraktal Geometri
Olasılık Kuramı
İstatistik
Matematiksel fizik
Kısmi Dif. Denklemler
Oyun Kuramı
Sistem ve Kontrol Kuramı
Yaklaşım Kuramı
Matematiksel İktisat
Seçim Kuramı
Aktüerya
Finansal Matematik
Kriptografi
Topoloji
Genel Topoloji
Cebirsel Topoloji
Geometrik Topoloji
Düğüm Kuramı
Diferansiyel Topoloji
Nokta-küme Topolojisi
Analiz
Reel Analiz
Ölçüm Kuramı
Kompleks Analiz
Tensör ve Vektor Analizi
Diferansiyel ve İntegral Denklemler
Nümerik Analiz
Fonksiyonel Analiz
Thank you for visiting our website wich cover about Matematik. We hope the information provided has been useful to you. Feel free to contact us if you have any questions or need further assistance. See you next time and dont miss to bookmark.