Sagot :
---------------------Üslü İfadelerde Dört İşlem-------------------
1- Toplama ve Çıkarma İşlemi
Tanım : Üslü ifadelerde toplama ve çıkarma işleminin yapılabilmesi için benzer terimlerin üs ve tabanlarının aynı olması gerekir
Kural :4 a.Xn b.Xn = (ab).Xn
Örnek / 1- 5.103 + 2.103 = (5+2).103
Örnek / 1- 5.103 - 2.103 = (5-2).103
Not8 m ¹ n ise am an işlemi bu haliyle yapılamaz.
Örnek / 105 + 104 = işleminde 54 olup düzenleme yaparak işlem tamamlanır.
1.105 = 10.104
Burdan 10.104 + 1.104 = (10+1). 104
Örnek / 55 + 54 = 5.54 + 54 = (5+1). 54
2- Çarpma ve Bölme İşlemi
Tanım: Bir üslü ifadede Çarpma ve Bölme İşleminin yapılabilmesi için benzer terimlerin tabanlarının ayını olması gerekir.
Kural 8/ 1- (a.Xm) .(b.Xn) = (a.b).Xm+n
Kural 8 2- (a.Xm) ¸ (b.Xn) = (a¸b).Xm-n veya
Örnek / (2.52 ) . (3.54) = 2.3.52+4 =6.56
Örnek / (8.36) ¸ (4.32) =
Örnek /
Örnek / 15a = 3a-2 olduğuna göre 5a nın değerini bulalım.
15a = 3a-2 = (3.5)a = şeklinde yazılırsa
15a = 3a-2 = (3.5)a =
= 3a.5a =
= 32 . 3a.5 a = 3a
= 9.5a =
= 9.5a = 1
= 5a=
------------------Üslü Denklemler--------------------
1- Tabanları Eşit Olan Denklemler:
KURAL:8 Tabanları eşit olan üslü denklemlerin üsleri de eşittir.
a ¹ 0, a ¹ -1, a ¹ 1 olmak üzere am = an Þ m=n dir
ÖRNEK/ 1- 2x = 25 Þ x=5 tir.
2- 3x = 81 Þ 3x= 34 Þ x=4 tür.
3- 2x+8 = 8 olduğuna göre, x=?
2x+8 = 2x . 28 olup
2x . 28 = 8 yerine konur ise, burdan 8 = 23 olup
2x . 28 = 23
2x = 23¸ 28
2x = 23-8
2x = 2-5 olup burdan x = -5 bulunur.
ÖRNEK / eşitliğini sağlayan x değerini bulalım.
ÇÖZÜM / 5x+1-(2-x) = (53)x-3
5x+1-2+x= 53(x-3)
52x-1= 53x-9 (Tabanlar eşit olup üsler eşit olmalıdır.)
2x-1 = 3x-9
2x –3x = -9+1
-x = -8
x = 8
2- Üsleri eşit olan denklemler:
KURAL 8 Üsleri eşit olan denklemlerde üs tek sayı ise tabanları eşit, üs çift sayı ise tabanlar eşit yada biri diğerinin ters işaretlisine eşittir.
n tek sayı ve an = bn Þ a=b dir.
n çift sıyı ve an = bn Þ a=b veya a = -b dir.
ÖRNEK/ 1- x3=53Þ x=5 tir.
2- (x+7)3=(3x-11)3 eşitliğini sağlayan x değerini bulalım.
Çözüm: 3=3 yani üsler eşit olduğundan tabanlarda eşit olmak zorundadır. Burdan,
(x+7) = (3x-11) olup parantezleri açalım
x+7 = 3x-11
7+11= 3x-x
18 = 2x
x =
x = 9
ÖRNEK / (2X+3)4= (X-2)4 eşitliğini sağlayan x değerlerini bulalım.
ÇÖZÜM / 4çift sayı olduğu için
(2x+3)4= (X-2)4 Þ
2x+3= x-2 Veya 2x+3= -(x-2)
2x-x= -2-3 Veya 2x+3= -x+2
x=5 Veya 2x+x= 2-3
3x = -1
x=
KURAL 8 xn = 1 şeklinde olan denklemler.
Bu tür denklemlerin çözümünde 3 durum vardır.
Xn = 1 Þ
ÖRNEK / 1- 18 = 1 dir. Çünkü 1 in tüm reel kuvvetleri 1 dir.
2- 50 = 1 dir. Çünkü 0 dışındaki tüm reel sayıların 0 ıncı kuvvetleri 1 dir.
3- (-1)6 = 1 dir. Çünkü (-1) in tüm çift kuvvetleri 1 dir.
4- 53x-15 = 1 ise x=?
Çözüm: 53x-15 = 1 ise
3x-15 = 0 olmalıdır,burdan
3x = 15
x = 15¸3
x =
ÖRNEK / (5x+3)7 = 1 ise x değerini hesaplayın.
ÇÖZÜM: (5x+3)7 = 17 (17=1 olup ) Burdan bu eşitliğin tabanları eşit olmalıdır.
(5x+3) = 1
5x+3 = 1
5x = 1-3
5x = -2
x =
ÖRNEK / (x+3)x-2= 1 eşitliğini sağlayan x değerini bulalım.
ÇÖZÜM / 1. DURUM..: x+3=1Þx=1-3
x=-2------(ª)
2. DURUM..: x-2=0--.--(ª)
x=2-------(ª) Bu kök üssü sıfır yapmadığı için alınır.
3. DURUM...: X+3= -1
x=-4------(ª) Bu kök yazıldığında üs çift sayı olacağı için, bu kök de alınır. O halde denklemi sağlayan x değerleri : -4 , -2 , 2 dir.
ÖRNEK / işleminin sonucunu üslü ifade olarak yazalım.
ÇÖZÜM / = 6.10x
=3.5x
Thank you for visiting our website wich cover about Matematik. We hope the information provided has been useful to you. Feel free to contact us if you have any questions or need further assistance. See you next time and dont miss to bookmark.