Sagot :
qulsah:
Fraktal nedir? Fraktal Geometri nedir? Sizler için araştırdık. Fraktal üzerine herşey burada.. Fraktal örnekleri ve fraktal şekilleri
Fraktal Nedir?
Fraktal
Fraktal parçalanmış ya da kırılmış anlamına gelen Lâtince fractus kelimesinden gelmiştir. İlk olarak 1975'de Polonya asıllı matematikçi Benoit Mandelbrot tarafından ortaya atıldığı varsayılır. Kendi kendini tekrar eden ama sonsuza kadar küçülen sekilleri, kendine benzer bir cisimde cismi oluşturan parçalar ya da bileşenler cismin bütününü inceler. www.edubilim.com Düzensiz ayrıntılar ya da desenler giderek küçülen ölçeklerde yinelenir ve tümüyle soyut nesnelerde sonsuza kadar sürebilir; tam tersi de her parçanın her bir parçası büyütüldüğünde, gene cismin bütününe benzemesi olayıdır. Doğada görebilen örnekler örneğin bazı bitkilerin yapısı dir.
Fraktal ve Fraktal Geometri nedir?
İlk matematiksel fraktal kavramı 1861 de keşfedildi. Karl Weierstrass sürekli fakat hiçbir noktada diferensiyellenebilir olmayan , yani köşe noktalarından oluşan bir eğri üzerindeki değişmeleri araştırken, hiçbir noktada değişme oranının bulunamayacağı kanaati ile sarsılmıştır. Fraktal kelimesini Weierstrass bu cins eğriler için ilk defa kullanmıştır.
Matematik anlamda ilk çalışılan fraktal, Cantor Cümlesidir. Cantor (1845-1918) Halle Üniversitesi'ndeyken matematiğin temel konularından olan ve günümüzde Cümle Teorisi olarak adlandırılan alanı kuran bir Alman matematikçidir.
Fraktalların tarihi gelişiminde Cantor, Sierpinski, Von Koch, Peano gibi matematikçiler tarafından oluşturulan fraktallar matematiksel canavarlar olarak adlandırılır. Matematiksel canavarların bahçesinde veya ilk fraktalların ortaya çıktığı zamanlarda Cantor cümlesi görünüş açısından diğerlerinden daha az gösterişli olmasına ve diğerlerine göre doğal yoruma daha uzak olmasına rağmen oldukça önemlidir. Cantor cümlesinin, matematiğin pek çok alanında özelikle Kaotik Dinamik Sistemlerde önemli rol oynadığı ve pek çok fraktallar (Julia cümleleri gibi) için de gerekli bir model olduğu görülmektedir.
Etrafımızda, parlak, tuhaf, güzel şekilli cisimler görürüz. Bunlara Fraktal denir. Gerçekten bunlar nedir?
İnternette fraktallar hakkında çok fazla bilgi vardır, fakat bu bilgilerin büyük kısmı ya güzel resimler veya yüksek seviyeli matematiksel kavramlarla ilgilidir. Dolayısıyla kolayca anlaşılır bir ifade ile diyebiliriz ki fraktallar tuhaf resimleri olan cisimler, matematiksel nesnelerdir. Okulda karşılaştığımız matematiğin çoğu eski bilgilerdir. Örneğin, geometride karşılaştığımız çemberler, dörtgenler ve üçgenler M.Ö. 300 üncü yıllarında Öklid tarafından ortaya konulmuştur. Buna rağmen Fraktal Geometri daha çok yenidir. Fraktallar üzerinde matematikçiler tarafından araştırmalar son 25 yıldır başlamış bulunmaktadır.
Fraktal; matematikte, çogunlukla kendine benzeme özelligi gösteren karmasik geometrik sekillerin ortak adidir. Fraktallar, klasik, yani Eukleidesçi geometrideki kare , daire , küre gibi basit sekillerden çok farklidir. Bunlar, dogadaki, Eukleidesçi geometri araciligiyla tanimlanamayacak pek çok uzamsal açidan düzensiz olguyu ve düzensiz biçimli tanimlama yetenegine sahiptir. Fraktal terimi “parçalanmis” yada “kirilmis” anlamina gelen Latince "fractus" sözcügünden türetilmistir. Ilk olarak 1975’te Polonya asilli matematikçi Beneoit B. Mandelbrot tarafindan ortaya atilan fraktal kavrami, yalnizca matematik degil fiziksel kimya, fizyoloji ve akiskanlar mekanigi gibi degisik alanlar üzerinde önemli etkiler yaratan yeni bir geometri sisteminin dogmasina yol açmistir.
Tüm fraktallar kendine benzer ya da en azindan tümüyle kendine benzer olmamakla birlikte, çogu bu özelligi tasir. Kendine benzer bir cisimde cismi olusturan parçalar ya da bilesenler cismin bütününe benzer. Düzensiz ayrintilar ya da desenler giderek küçülen ölçeklerde yinelenir ve tümüyle soyut nesnelerde sonsuza degin sürebilir; öyle ki,her parçanin her bir parçasi büyütüldügünde, gene cismin bütününe benzer.www.edubilim.com Bu fraktal olgusu, kar tanesi ve agaç kabugunda kolayca gözlenebilir. Bu tip tüm dogal fraktallar ile matematiksel olarak kendine benzer olan bazilari, stokastik, yani rastgeledir; bu nedenle ancak istatistiksel olarak ölçeklenirler. Fraktal cisimler,düzensiz biçimli olduklarindan ötürü Eukleidesçi sekilleri ötelenme bakisina sahip degildirler. (Ötelenme bakisimina sahip bir cisim kendi çevresinde döndürüldügünde görünümü ayni kalir.)
Thank you for visiting our website wich cover about Matematik. We hope the information provided has been useful to you. Feel free to contact us if you have any questions or need further assistance. See you next time and dont miss to bookmark.