Sagot :
ÇARPANLARA AYIRMA
Harfli ifadelerin çarpanları aşağıdaki yöntemlerden uygun olanları kullanılarak bulunur.
1) Ortak çarpan parantezine alma
Örnek: 2x-4xy ortak 2x parantezine alırsak 2x.(1-2y)
2) Gruplandırma
Örnek: x2+xy+xy+y2 gruplandırırsak (x+y).(x+y)
3) Baştaki ve sondaki terimin çarpanlarından yararlanma
Örnek: x2+7x+10 baştaki ve sondaki terimin çarpanlarından (x+2).(x+5)
4) Özdeşliklerden yararlanma
Örnek: 9-x2 iki kare farkından (3-x).(3+x)
Örnek: x2+2x+1 tam kare ifadelerden (x+1)2
Rasyonel cebirsel ifadelerde işlemler yapılırken payda eşitlenmesi gereken durumlarda paydaların en küçük ortak katının bulunması gerekir.
Rasyonel ifadelerde öncelikle sadeleştirme yapmak işlemleri kolaylaştırır.Sadeleştirme işleminde pay ve paydadaki ifadeleri çarpanlarına ayırırken ortak çarpan oluşmasına dikkat edilir.Ayrıca sadeleştirilecek ifadelerin çarpım durumunda olması gerekir.Çarpım durumunda olmazsa sadeleştirme yani götürme yapılamaz.
alıntıdır........
ÖNEMLİ ÖZDEŞLİKLER
ÖNEMLİ ÖZDEŞLİKLER
I) Tam Kare Özdeşliği:
a) İki Terim Toplamının Karesi : (a + b)2 = a2 + 2ab + b2
b) İki Terim farkının Karesi : (a – b)2 = a2 – 2ab + b2
İki terim toplamının ve farkının karesi alınırken; birincinin karesi,birinci ile ikincinin iki katı, ikincinin karesi alınır.
c) Üç Terim Toplamının Karesi: (a +b + c)2 = a2 + b2 + c2 + 2 (ab + ac + bc) şeklindedir.
II) İki Terim Toplamı veya Farkının Küpü :
a) İki Terim Toplamının Küpü : (a + b)3 = a3 + 3a2b + 3ab2 + b3
b) İki Terim Farkının Küpü : (a – b)3 = a3 – 3a2b + 3ab2 – b3
Birinci terimin küpü;() birincinin karesi ile ikincinin çarpımının 3 katı, (+) birinci ile ikincinin karesinin çarpımının 3 katı,() ikincinin küpü biçimindedir. Bu açılımlara Binom Açılımıda denir
Not:. Paskal Üçgeni kullanılarak 4.,5.,6.,...Dereceden iki terimli lerin özdeşliklerini de yazabiliriz.
III) İki Kare Farkı Özdeşliği: (a + b) (a – b) = a2 – b2
İki terim toplamı ile farkının çarpımı; birincinin karesi ile ikincinin karesinin farkına eşittir
IV) xn + yn veya xn - yn biçimindeki polinomların Özdeşliği :
i) İki küp Toplam veya Farkı : a3 + b3 = (a + b) (a2 – ab + b2)
a3 – b3 = (a – b) (a2 + ab + b2)
ii) a4 + b4 = (a + b) (a3 – a2b + ab2 – b3)
a4 – b4 = (a2 + b2) (a + b) (a – b)
iii) a5 + b5 = (a + b) (a4 – a3b + a2 b2 – ab3 + b4)
a5 – b5 = (a – b) (a4 + a3b + a2 b2 + ab3 + b4)
iv) a6 + b6 = (a + b) (a5 – a4b + a3 b2 – a2b3 + ab4 – b5)
a6 – b6 = (a – b) (a2 + ab + b2) (a+ b) (a2 + ab + b2)
v) a7 + b7 = (a + b) (a6 – a5b + a4b2 – a3b3 + a2b4 – ab5 + b6)
a7 – b7 = (a – b) (a6 + a5b + a4b2 + a3b3 + a2b4 + ab5 + b6)
Özdeşlikleri aşağıdaki şekilleriyle düzenleyerek kullanabiliriz
1) x2 + y2 = (x + y)2 – 2xy
2) x2 + y2 = (x – y)2 + 2xy
3) (x – y)2 = (x + y)2 – 4xy
4) (x + y)2 = (x – y)2 + 4xy
5) x3 – y3 = (x – y)3 + 3xy (x – y)
6) x3 + y3 = (x + y)3 – 3xy (x + y)
7) x2 + y2 + z2 = (x + y + z)2 – 2 (xy + xz + yz)
Thank you for visiting our website wich cover about Matematik. We hope the information provided has been useful to you. Feel free to contact us if you have any questions or need further assistance. See you next time and dont miss to bookmark.