Sagot :
"Atatürk ölümünden birbuçuk yıl kadar önce, üçüncü Türk Dil Kurultayından (24-31 Ağustos 1936) hemen sonra 1936-1937 yılı kış aylarında kendi eliyle Geometri adlı bir kitap yazmıştır"
Atatürk, bunu, birtakım Fransızca geometri kitaplarını okuduktan sonra hazırlamış ve yapıt ilk kez 1937 yılında "Geometri öğretenlerle, bu konuda kitap yazacaklara kılavuz olarak Kültür Bakanlığınca yayınlanmıştır"(3)
Bu 44 sayfalık yapıttaki boyut, uzay, yüzey, düzey, çap, yarıçap, kesek kesit, yay, çember, teğet, açı, açıortay, içters açı, dışters açı, taban, eğik, kırık, çekül, yatay, düşey, yöndeş, konum, üçgen, dörtgen, beşgen, köşegen, eşkenar, ikizkenar, paralelkenar, yanal, yamuk, artı, eksi, çarp, bölü, eşit, toplam, oran, orantı, türev, alan, varsayı, gerekçe gibi terimler Atatürk tarafından türetilmiştir
Yapıttaki tanımların tümünü Atatürk yazmıştır Her tanım, ilgi kavramı tüm öğeleriyle eksiksiz ve açık biçimde anlatmakta, özel ve temelli nitelikleri içermektedir Gerekli ve yeterli örnekler de verilmiştir Tanınmış bilim tarihçisi Ord Prof Dr Aydın Sayılı, tam bir yetkiyle, bu Geometri kitabını, "küçük fakat anıtsal bir yapıt" diye nitelendirmiştir
ATATÜRK VE GEOMETRİ
Türk Dil Kurumu başuzmanı olan ve kendisine Mustafa Kemal tarafından Dilaçar soyadı verilen Agop Dilaçar a göre; Geometri kitabını Atatürk, ölümünden bir buçuk yıl kadar önce, 1936 – 1937 yılı kış aylarında Dolmabahçe sarayında kendi elleriyle yazmıştır. Askerlik ocağından gelen Atatürk aynı anda büyük bir eğitimci de olup yurdun kültür sorunlarıyla da fazlasıyla ilgilenmiştir. (yazıyı ben yazmadım.. Okuyup yazana tşk dileklerimi sunuyorum)
Türk Dil Kurumu başuzmanı olan ve kendisine Mustafa Kemal tarafından Dilaçar soyadı verilen Agop Dilaçar a göre; Geometri kitabını Atatürk, ölümünden bir buçuk yıl kadar önce, 1936 – 1937 yılı kış aylarında Dolmabahçe sarayında kendi elleriyle yazmıştır. Askerlik ocağından gelen Atatürk aynı anda büyük bir eğitimci de olup yurdun kültür sorunlarıyla da fazlasıyla ilgilenmiştir. Tarih boyunca yabancı ülkelerde büyük sanını kazanan asker devlet başkanları, uluslarına eğitim alanında da önderlik etmişler, kendi kalemleriyle eğitici yapıtlar meydana getirmişlerdir. İngilizlerin büyük Alfredi(Alfred the Great, 849-899) ve Almanların büyük Friedrichi(Freidrich der Grosse, 1712-1786) bu gerçeğin iki büyük kanıtıdır.
Geometri kitabının kapağında önemle belirtildiği üzere, Atatürk ün bu yapıtı, geometri öğretenlerle, bu konuda kitap yazacaklara kılavuz olarak Kültür Bakanlığınca neşredilmiştir. Kapakta yazar adı yoktur, fakat yazının ruhu ve tutumu, onun Atatürk ün elinden çıkmış olduğunu apaçık gösterir.
Geometri, eski terimle Hendese, eğitim sistemimizde önemli bir yer tuttuğu halde, terimleri çok ağdalı ve çapraşıktı. Arapça ve Farsça okul programından kaldırılmış, fakat Arapça üzerine kurulmuş olan terimler kalmıştı. Örneğin, müselles-i mütesaviyül adlayı hangi öğrenci anlayabilirdi ki. Atatürk, öğrencinin anlayış yolundaki tıkanıklığı açmak için bu terimi eşkenar üçgene çevirdi. İşte bu 44 sayfalık küçük kitapta boyut, uzay, yüzey, düzey, çap, yarıçap, kesek, kesit, yay, çember, teğet, açı, açıortay, içters açı, dışters açı, taban, eğik, kırık, çekül, yatay, düşey, dikey, yöndeş, konum, üçgen, dörtgen, beşgen, köşegen, eşkenar, ikizkenar, paralelkenar, yanal, yamuk, artı, eksi, çarpı, bölü, eşit, toplam, oran, orantı, türev, alan, varsayı, gerekçe gibi terimler hep bu amaçla Atatürk tarafından türetilip daha sonra da Türkçeye yerleşmişlerdir.
Atatürk eleştirileri daima memnunlukla karşılamış ve ortaya koyduğu yeni sözcük ve terimlere bir deneme hakkı tanıdığını belirtmiştir. Amacı daima daha uyguna doğru ilerlemek olmuş, önerilen değişiklikleri akla uygun görünce hemen benimsemiştir. Atatürk ün ortaya koyduğu terimlerden birkaçı bugün kullanılıştan çıkmış, yerlerini daha uygunlarına bırakmışlardır. Tümey açı yerine tümler açı, bütey açı yerine bütünler açı bunlara örnektir. Mustafa Kemal ilke insanı olduğu için bunları hoş görmüş, hatta sevinmiştir de. Yeter ki ortaya koyduğu ilkeler sarsılmasın ve yine zaviyetan-ı mütekabiletan-ı dahiletan ( = içters açılar)gibi terimlere dönülmesin.
Şimdi bu kitaptan bazı alıntılar yapalım:
GEOMETRİ:
Thank you for visiting our website wich cover about Matematik. We hope the information provided has been useful to you. Feel free to contact us if you have any questions or need further assistance. See you next time and dont miss to bookmark.